OFFSET
0,4
COMMENTS
This triangle equals A309559 with reversed rows and supplemented main diagonal (all terms are 1).
There are two lower triangular matrices M and N so that the matrix product M * N equals T (seen as a matrix).
/ 1 \ / 1 \
| 0 1 | | 1 1 |
| 0 1 1 | | 1 1 1 |
M(n,k) = | 0 1 2 1 | N(n,k) = | 1 1 1 1 |
| 0 1 2 3 1 | | 1 1 1 1 1 |
| 0 1 2 3 4 1 | | 1 1 1 1 1 1 |
\ . . . . . . . / \ . . . . . . . /
The matrix product N * M equals the rascal triangle A077028 (seen as a matrix).
FORMULA
O.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((t^2+(1-t)^2) * (1-x*t) + x * t^2 * (1-t)) / ((1-t)^3 * (1-x*t)^2).
G.f. of column k: Sum_{n>=k} T(n,k) * t^n = t^k * (t^2/(1-t)^3 + 1/(1-t) + k*t/(1-t)^2) for k >= 0.
T(n,k) = 1 + T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 0 < k < n with initial values T(n,0) = (n*(n-1)+2)/2 and T(n,n) = 1 for n >= 0.
T(n,k) = (2 + T(n-1,k-1) * T(n-1,k+1)) / T(n-2,k) for 0 < k < n-1 with initial values given above and T(n,n-1) = n for n > 0.
Referring to the triangle M(n,k) (see comments), we get:
(1) Sum_{k=0..n} (k+1) * M(n,k) = A116731(n+1) for n >= 0;
(2) Sum_{k=1..n} k * M(n,k) = A081489(n) for n >= 1.
T(n,k) = T(n-1,k-1) + n-k for 0 < k <= n with initial values T(n,0) = (n*(n-1)+2)/2 for n >= 0.
T(n,k) = 2 * T(n-1,k-1) - T(n-2,k-2) for 1 < k <= n with initial values T(0,0) = 1 and T(n,0) = T(n,1) = (n*(n-1)+2)/2 for n > 0.
EXAMPLE
The triangle T(n,k) starts:
n \ k : 0 1 2 3 4 5 6 7 8 9 10 11
==================================================================
0 : 1
1 : 1 1
2 : 2 2 1
3 : 4 4 3 1
4 : 7 7 6 4 1
5 : 11 11 10 8 5 1
6 : 16 16 15 13 10 6 1
7 : 22 22 21 19 16 12 7 1
8 : 29 29 28 26 23 19 14 8 1
9 : 37 37 36 34 31 27 22 16 9 1
10 : 46 46 45 43 40 36 31 25 18 10 1
11 : 56 56 55 53 50 46 41 35 28 20 11 1
etc.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Werner Schulte, Nov 22 2019
STATUS
approved