login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329854
Triangle read by rows: T(n,k) = ((n - k)*(n + k - 1) + 2)/2, 0 <= k <= n.
0
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 7, 7, 6, 4, 1, 11, 11, 10, 8, 5, 1, 16, 16, 15, 13, 10, 6, 1, 22, 22, 21, 19, 16, 12, 7, 1, 29, 29, 28, 26, 23, 19, 14, 8, 1, 37, 37, 36, 34, 31, 27, 22, 16, 9, 1, 46, 46, 45, 43, 40, 36, 31, 25, 18, 10, 1, 56, 56, 55, 53, 50, 46, 41, 35, 28, 20, 11, 1
OFFSET
0,4
COMMENTS
This triangle equals A309559 with reversed rows and supplemented main diagonal (all terms are 1).
There are two lower triangular matrices M and N so that the matrix product M * N equals T (seen as a matrix).
/ 1 \ / 1 \
| 0 1 | | 1 1 |
| 0 1 1 | | 1 1 1 |
M(n,k) = | 0 1 2 1 | N(n,k) = | 1 1 1 1 |
| 0 1 2 3 1 | | 1 1 1 1 1 |
| 0 1 2 3 4 1 | | 1 1 1 1 1 1 |
\ . . . . . . . / \ . . . . . . . /
The matrix product N * M equals the rascal triangle A077028 (seen as a matrix).
FORMULA
O.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((t^2+(1-t)^2) * (1-x*t) + x * t^2 * (1-t)) / ((1-t)^3 * (1-x*t)^2).
G.f. of column k: Sum_{n>=k} T(n,k) * t^n = t^k * (t^2/(1-t)^3 + 1/(1-t) + k*t/(1-t)^2) for k >= 0.
T(n,k) = 1 + T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 0 < k < n with initial values T(n,0) = (n*(n-1)+2)/2 and T(n,n) = 1 for n >= 0.
T(n,k) = (2 + T(n-1,k-1) * T(n-1,k+1)) / T(n-2,k) for 0 < k < n-1 with initial values given above and T(n,n-1) = n for n > 0.
Referring to the triangle M(n,k) (see comments), we get:
(1) Sum_{k=0..n} (k+1) * M(n,k) = A116731(n+1) for n >= 0;
(2) Sum_{k=1..n} k * M(n,k) = A081489(n) for n >= 1.
T(n,k) = T(n-1,k-1) + n-k for 0 < k <= n with initial values T(n,0) = (n*(n-1)+2)/2 for n >= 0.
T(n,k) = 2 * T(n-1,k-1) - T(n-2,k-2) for 1 < k <= n with initial values T(0,0) = 1 and T(n,0) = T(n,1) = (n*(n-1)+2)/2 for n > 0.
EXAMPLE
The triangle T(n,k) starts:
n \ k : 0 1 2 3 4 5 6 7 8 9 10 11
==================================================================
0 : 1
1 : 1 1
2 : 2 2 1
3 : 4 4 3 1
4 : 7 7 6 4 1
5 : 11 11 10 8 5 1
6 : 16 16 15 13 10 6 1
7 : 22 22 21 19 16 12 7 1
8 : 29 29 28 26 23 19 14 8 1
9 : 37 37 36 34 31 27 22 16 9 1
10 : 46 46 45 43 40 36 31 25 18 10 1
11 : 56 56 55 53 50 46 41 35 28 20 11 1
etc.
CROSSREFS
Row sums equal A116731(n+1).
Row sums apart from column 0 equal A081489.
Sequence in context: A092848 A128111 A107356 * A124725 A106522 A128175
KEYWORD
nonn,tabl
AUTHOR
Werner Schulte, Nov 22 2019
STATUS
approved