

A116731


Number of permutations of length n which avoid the patterns 321, 2143, 3124; or avoid the patterns 132, 2314, 4312, etc.


7



1, 2, 5, 12, 25, 46, 77, 120, 177, 250, 341, 452, 585, 742, 925, 1136, 1377, 1650, 1957, 2300, 2681, 3102, 3565, 4072, 4625, 5226, 5877, 6580, 7337, 8150, 9021, 9952, 10945, 12002, 13125, 14316, 15577, 16910, 18317, 19800, 21361, 23002, 24725, 26532
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Row sums of triangle A130154. Also, binomial transform of [1, 1, 2, 2, 0, 0, 0, ...].  Gary W. Adamson, Oct 23 2007
Conjecture: also counts the distinct pairs (flips, iterations) that a bubble sort program generates when sorting all permutations of 1..n.  Wouter Meeussen, Dec 13 2008
a(n) is the number of lattice points (x,y) in the closed region bounded by the parabolas y = x*(x  n) and y = x*(n  x).  Clark Kimberling, Jun 01 2013


LINKS

Table of n, a(n) for n=1..44.
GuoNiu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
GuoNiu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013.
Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132Avoiding Permutations II, Integers: Electronic Journal of Combinatorial Number Theory, 15 (2015), #A16.
Lara Pudwell, Systematic Studies in Pattern Avoidance, 2005.
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1)


FORMULA

G.f.: (3*x^2  2*x + 1)*x/(x  1)^4.
a(n) = (n^3  3*n^2 + 5*n)/3.  Franklin T. AdamsWatters, Sep 13 2006
a(n) = A006527(n1) + 1.  Vladimir Joseph Stephan Orlovsky, May 04 2011


MATHEMATICA

Table[(n^33*n^2+5*n)/3, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)


CROSSREFS

Cf. A006527, A130154.
Sequence in context: A096584 A002836 A116720 * A116722 A116730 A240847
Adjacent sequences: A116728 A116729 A116730 * A116732 A116733 A116734


KEYWORD

nonn,easy


AUTHOR

Lara Pudwell, Feb 26 2006


EXTENSIONS

More terms from Franklin T. AdamsWatters, Sep 13 2006


STATUS

approved



