Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 04 2024 18:23:18
%S 1,1,1,2,2,1,4,4,3,1,9,9,7,4,1,21,21,17,11,5,1,51,51,42,29,16,6,1,127,
%T 127,106,76,46,22,7,1,323,323,272,200,128,69,29,8,1,835,835,708,530,
%U 352,204,99,37,9,1,2188,2188,1865,1415,965,587,311,137,46,10,1,5798,5798,4963
%N Triangle T(n,h) read by rows: The number of Motzkin Paths of n>=2 steps that start with an Up step and touch the horizontal axis h>=1 times afterwards.
%C To touch means: the path reaches the horizontal line with a down-step, or it is at the horizontal level and takes another horizontal step.
%H Alois P. Heinz, <a href="/A348840/b348840.txt">Rows n = 2..150, flattened</a>
%F Conjecture: T(n,n-2) = n-2.
%F Conjecture: T(n,n-3) = A000124(n-3).
%F Conjecture: T(n,n-4) = -11 + 19*n/3 - 3*n^2/2 + n^3/6.
%F From _Alois P. Heinz_, Nov 01 2021: (Start)
%F Sum_{k=1..n-1} k * T(n,k) = A005322(n).
%F T(2n,n) = A344502(n-1) for n >= 1. (End)
%F Conjecture: Riordan array (g(x)^2, x*g(x)), where g(x) = 1/(1 + x)*c(x/(1 + x)) and c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - _Peter Bala_, Feb 04 2024
%e The triangle starts:
%e 1
%e 1 1
%e 2 2 1
%e 4 4 3 1
%e 9 9 7 4 1
%e 21 21 17 11 5 1
%e 51 51 42 29 16 6 1
%e 127 127 106 76 46 22 7 1
%e 323 323 272 200 128 69 29 8 1
%e 835 835 708 530 352 204 99 37 9 1
%e 2188 2188 1865 1415 965 587 311 137 46 10 1
%e 5798 5798 4963 3805 2647 1667 937 457 184 56 11 1
%e ...
%e T(n,n-1)=1 counts udhhhhh... staying on the horizontal line.
%e T(4,1)=2 counts uudd, uhhd.
%e T(4,2)=2 counts udud, uhdh.
%e T(4,3)=1 counts udhh.
%e T(5,1)=4 counts uudhd uuhdd uhudd uhhhd.
%e T(5,2)=4 counts uuddh uduhd uhdud uhhdh.
%e T(5,3)=3 counts ududh udhud uhdhh.
%e T(5,4)=1 counts udhhh.
%p b:= proc(x, y) option remember; expand(`if`(y>x or y<0, 0,
%p `if`(x=0, 1, add(b(x-1, y-j), j=-1..1))*`if`(y=0, z, 1)))
%p end:
%p T:= n-> (p-> seq(coeff(p, z, i), i=1..n-1))(b(n-1, 1)):
%p seq(T(n), n=2..14); # _Alois P. Heinz_, Nov 01 2021
%t b[x_, y_] := b[x, y] = Expand[If[y > x || y < 0, 0,
%t If[x == 0, 1, Sum[b[x - 1, y - j], {j, -1, 1}]]*If[y == 0, z, 1]]];
%t T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, n-1}]][b[n-1, 1]];
%t Table[T[n], {n, 2, 14}] // Flatten (* _Jean-François Alcover_, Mar 17 2022, after _Alois P. Heinz_ *)
%Y Cf. A002026 (row sums), A001006 (columns h=1,2), A102071 (column h=3).
%Y Cf. A000108, A005322, A344502.
%K nonn,tabl
%O 2,4
%A _R. J. Mathar_, Nov 01 2021