login
A348838
Number of 3-sided prudent polygons of area n.
2
6, 10, 20, 42, 92, 204, 454, 1010, 2242, 4962, 10946, 24066, 52736, 115186, 250800, 544432, 1178432, 2543712, 5476352, 11760642, 25196566, 53861008, 114889430, 244571174, 519630462, 1102021562, 2333088968, 4931232086, 10406327848, 21927562520, 46138651012
OFFSET
1,1
LINKS
Nicholas R. Beaton and Anthony Guttmann, Table of n, a(n) for n = 1..3200
Nicholas R. Beaton, Philippe Flajolet and Anthony J. Guttmann, The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics, arXiv:1011.6195 [math.CO], Nov 29, 2010.
Nicholas R. Beaton, Philippe Flajolet and Anthony J. Guttmann, The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics, J. Comb. Theory Series A vol.118, 2011, pp.2261-2290.
Nicholas R. Beaton, Philippe Flajolet, Tim Garoni and Anthony J. Guttmann, Some New Self-avoiding Walk and Polygon Models, Fundamenta Informaticae, vol. 117, 2012, pp. 19-33.
FORMULA
Reference gives generating function and asymptotics.
MATHEMATICA
nmax = 40; Rest[CoefficientList[Series[2*q*(3 - 10*q + 9*q^2 - q^3)/((1 - 2*q)^2*(1 - q)) - 2*q^3*(1 - q)^2/(1 - 2*q)^2 * Sum[(-1)^m * q^(2*m) / ((1 - 2*q)^m*(1 - q - q^(m + 1))) * Product[(1 - q - q^k + q^(k+1) - q^(k+2)) / (1 - q - q^(k+1)), {k, 1, m-1}], {m, 1, nmax}], {q, 0, nmax}], q]]
CROSSREFS
Sequence in context: A153369 A107981 A065758 * A254028 A085274 A175648
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Nov 02 2021
STATUS
approved