login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107981
Triangle read by rows: T(n,k) = (k+1)(k+2)(n+2)(n+3)(6n^2 - 8n*k + 18n + 3k^2 - 11k + 12)/144 for 0<=k<=n.
0
1, 6, 10, 20, 40, 50, 50, 110, 155, 175, 105, 245, 371, 455, 490, 196, 476, 756, 980, 1120, 1176, 336, 840, 1380, 1860, 2220, 2436, 2520, 540, 1380, 2325, 3225, 3975, 4515, 4830, 4950, 825, 2145, 3685, 5225, 6600, 7700, 8470, 8910, 9075, 1210, 3190
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids. Column 0 yields A002415. Main diagonal yields A006542.
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,l)}).
EXAMPLE
Triangle begins:
1;
6,10;
20,40,50;
50,110,155,175;
MAPLE
T:=proc(n, k) if k<=n then 1/144*(k+1)*(k+2)*(n+2)*(n+3)*(6*n^2-8*n*k+18*n+3*k^2-11*k+12) else 0 fi end: for n from 0 to 9 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A117349 A362183 A153369 * A065758 A348838 A254028
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved