login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107984
Triangle read by rows: T(n,k) = (k+1)*(n+2)*(2n-k+3)*(n-k+1)/6 for 0 <= k <= n.
2
1, 5, 4, 14, 16, 10, 30, 40, 35, 20, 55, 80, 81, 64, 35, 91, 140, 154, 140, 105, 56, 140, 224, 260, 256, 220, 160, 84, 204, 336, 405, 420, 390, 324, 231, 120, 285, 480, 595, 640, 625, 560, 455, 320, 165, 385, 660, 836, 924, 935, 880, 770, 616, 429, 220, 506, 880
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids. Column 0 yields A000330. Main diagonal yields A000292. Row sums yield A006414.
LINKS
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,3,-l)}).
FORMULA
T(n-2,k-1) = n*(2*n-k)*(n-k)*k/6. - M. F. Hasler, Dec 26 2016
EXAMPLE
Triangle begins:
1;
5, 4;
14, 16, 10;
30, 40, 35, 20;
MAPLE
T:=proc(n, k) if k<=n then (k+1)*(n+2)*(2*n-k+3)*(n-k+1)/6 else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
PROG
(PARI) A107984_row(n)=vector(n+1, k, k*(2*n-k+4)*(n-k+2))*(n+2)/6 \\ M. F. Hasler, Dec 26 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved