|
|
A107984
|
|
Triangle read by rows: T(n,k) = (k+1)*(n+2)*(2n-k+3)*(n-k+1)/6 for 0 <= k <= n.
|
|
1
|
|
|
1, 5, 4, 14, 16, 10, 30, 40, 35, 20, 55, 80, 81, 64, 35, 91, 140, 154, 140, 105, 56, 140, 224, 260, 256, 220, 160, 84, 204, 336, 405, 420, 390, 324, 231, 120, 285, 480, 595, 640, 625, 560, 455, 320, 165, 385, 660, 836, 924, 935, 880, 770, 616, 429, 220, 506, 880
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Kekulé numbers for certain benzenoids. Column 0 yields A000330. Main diagonal yields A000292. Row sums yield A006414.
|
|
LINKS
|
Table of n, a(n) for n=0..56.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,3,-l)}).
|
|
FORMULA
|
T(n-2,k-1) = n*(2*n-k)*(n-k)*k/6. - M. F. Hasler, Dec 26 2016
|
|
EXAMPLE
|
Triangle begins:
1;
5, 4;
14, 16, 10;
30, 40, 35, 20;
|
|
MAPLE
|
T:=proc(n, k) if k<=n then (k+1)*(n+2)*(2*n-k+3)*(n-k+1)/6 else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
|
|
PROG
|
(PARI) A107984_row(n)=vector(n+1, k, k*(2*n-k+4)*(n-k+2))*(n+2)/6 \\ M. F. Hasler, Dec 26 2016
|
|
CROSSREFS
|
Cf. A000330, A000292, A006414.
Sequence in context: A344817 A094414 A158867 * A133178 A154225 A188627
Adjacent sequences: A107981 A107982 A107983 * A107985 A107986 A107987
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Emeric Deutsch, Jun 12 2005
|
|
STATUS
|
approved
|
|
|
|