OFFSET
1,1
COMMENTS
Every semiprime must be in one of these three disjoint sets: the product of two primes of the form x^2+y^2, the product of two primes of the form x^2+3y^2, or the product of a prime of the form x^2+y^2 and a prime of the form x^2+3y^2. Equivalently, every semiprime must be in one of these three disjoint sets: the product of two primes of the form x^2+y^2 (2 or 4n+1), or the product of two primes of the form 4n+3, or the product of a prime of the form x^2+y^2 and a prime of the form 4n+3. In the latter case, such a semiprime is itself either of the form 4n+3 or the form 8n+6.
LINKS
Eric Weisstein's World of Mathematics, Semiprime.
MATHEMATICA
Module[{nn=60, f1, f2, minlen}, f1=Join[{2}, Select[4Range[0, nn]+1, PrimeQ]]; f2=Select[4Range[0, nn]+3, PrimeQ]; minlen=Min[Length[f1], Length[f2]]; Take[Union[Flatten[Outer[Times, Take[f1, minlen], Take[f2, minlen]]]], nn]] (* Harvey P. Dale, May 06 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 12 2005
STATUS
approved