login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348837
a(n) is the smallest k such that the sum of the number of divisors of the n numbers from k to k+n-1 equals tau(k+n).
1
2, 10, 93, 236, 355, 2634, 2873, 5032, 11331, 20150, 18889, 80628, 55427, 207886, 205905, 371264, 369583, 617742, 166301, 1436380, 720699, 2227658, 1081057, 831576, 4633175, 3326374, 2633373, 5045012, 11850271, 6683010, 11642369, 9979168, 9424767, 8648606, 24418765
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 2 because tau(2) = tau(3) = 2; a(1) = A005237(1).
a(2) = 10 because tau(10) + tau(11) = 4 + 2 = 6, the same as tau(12) = 6.
a(3) = 93 because tau(93) + tau(94) + tau(95) = 4 + 4 + 4 = 12, the same as tau(96) = 12.
MATHEMATICA
a[n_] := Module[{div = DivisorSigma[0, Range[n]], k = n + 1}, While[(d = DivisorSigma[0, k]) != Plus @@ div, div = Join[Drop[div, 1], {d}]; k++]; k - n]; Array[a, 20] (* Amiram Eldar, Nov 01 2021 *)
PROG
(PARI) a(n) = my(k=1); while (sum(i=k, k+n-1, numdiv(i)) != numdiv(k+n), k++); k; \\ Michel Marcus, Nov 01 2021
(PARI) a(n)=my(v=vector(n, k, numdiv(k)), s=vecsum(v), t, i=n); forfactored(k=n+1, 2^63-1, t=numdiv(k); if(s==t, return(k[1]-n)); if(i++>n, i=1); s+=t-v[i]; v[i]=t) \\ Charles R Greathouse IV, Nov 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Metin Sariyar, Nov 01 2021
EXTENSIONS
a(21)-a(26) from Michel Marcus, Nov 01 2021
a(27)-a(35) from Amiram Eldar, Nov 01 2021
STATUS
approved