OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 10*x^4 + 93*x^5 + 1328*x^6 + 26122*x^7 +...
where A(x) is generated by nesting even iterations of shifted series:
A(x) = x + x*B(B(x));
B(x) = x + x*C(C(C(C(x))));
C(x) = x + x*D(D(D(D(D(D(x))))));
D(x) = x + x*E(E(E(E(E(E(E(E(x)))))))); ...
The coefficients in the respective series begin:
B: [1, 1, 4, 36, 522, 10528, 273524, 8744724, 333829460, ...];
C: [1, 1, 6, 78, 1551, 41104, 1355350, 53445516, 2457584702, ...];
D: [1, 1, 8, 136, 3444, 113600, 4570568, 216110200, 11732501680, ...];
E: [1, 1, 10, 210, 6465, 255600, 12172130, 673488008, 42339965808, ...];
F: [1, 1, 12, 300, 10878, 501728, 27635132, 1754547372, 125631525316, ...];
G: [1, 1, 14, 406, 16947, 893648, 55924974, 4010847764, 322635273394, ...];
H: [1, 1, 16, 528, 24936, 1480064, 103765520, 8300468272, 741606109248, ...]; ...
PROG
(PARI) /* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* G.f. A(x) results from nested iterations of shifted series: */
{a(n)=local(A=x); for(k=0, n, A=x + x*ITERATE(2*n-2*k+2, A, n)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2012
STATUS
approved