login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205320
G.f.: A(x) = x + x*ITERATE^2(x + x*ITERATE^4(x + x*ITERATE^6(x + x*ITERATE^8(x + ...)))), where ITERATE^n(F(x)) denotes the n-th iteration of F(x), and the nesting of even iterations continue indefinitely.
2
1, 1, 2, 10, 93, 1328, 26122, 662688, 20768108, 780250074, 34376313158, 1746482796840, 100964618760718, 6570171769295176, 476961360708388461, 38334059714026619028, 3388777691630610169520, 327633680973521183134333, 34470692910252290655821322, 3929174185110859040857539276
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 10*x^4 + 93*x^5 + 1328*x^6 + 26122*x^7 +...
where A(x) is generated by nesting even iterations of shifted series:
A(x) = x + x*B(B(x));
B(x) = x + x*C(C(C(C(x))));
C(x) = x + x*D(D(D(D(D(D(x))))));
D(x) = x + x*E(E(E(E(E(E(E(E(x)))))))); ...
The coefficients in the respective series begin:
B: [1, 1, 4, 36, 522, 10528, 273524, 8744724, 333829460, ...];
C: [1, 1, 6, 78, 1551, 41104, 1355350, 53445516, 2457584702, ...];
D: [1, 1, 8, 136, 3444, 113600, 4570568, 216110200, 11732501680, ...];
E: [1, 1, 10, 210, 6465, 255600, 12172130, 673488008, 42339965808, ...];
F: [1, 1, 12, 300, 10878, 501728, 27635132, 1754547372, 125631525316, ...];
G: [1, 1, 14, 406, 16947, 893648, 55924974, 4010847764, 322635273394, ...];
H: [1, 1, 16, 528, 24936, 1480064, 103765520, 8300468272, 741606109248, ...]; ...
PROG
(PARI) /* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* G.f. A(x) results from nested iterations of shifted series: */
{a(n)=local(A=x); for(k=0, n, A=x + x*ITERATE(2*n-2*k+2, A, n)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A348837 A349880 A260339 * A254243 A026025 A231375
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2012
STATUS
approved