login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205319
G.f.: A(x) = x + x*ITERATE^3(x + x*ITERATE^5(x + x*ITERATE^7(x + x*ITERATE^9(x + ...)))), where ITERATE^n(F(x)) denotes the n-th iteration of F(x), and the nesting of odd iterations continue indefinitely.
2
1, 1, 3, 21, 249, 4265, 96773, 2759229, 95447863, 3906844257, 185703476509, 10101591706057, 621466309755017, 42823493907501689, 3278179258815893143, 276843784084034075045, 25636587602145118330341, 2589449871609662090384097, 283950074290110976428751741
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 21*x^4 + 249*x^5 + 4265*x^6 + 96773*x^7 +...
where A(x) is generated by nesting odd iterations of shifted series:
A(x) = x + x*B(B(B(x)));
B(x) = x + x*C(C(C(C(C(x)))));
C(x) = x + x*D(D(D(D(D(D(D(x)))))));
D(x) = x + x*E(E(E(E(E(E(E(E(E(x))))))))); ...
The coefficients in the respective series begin:
B: [1, 1, 5, 55, 945, 22025, 648165, 23096609, 969937489, ...];
C: [1, 1, 7, 105, 2373, 70553, 2580977, 111821185, 5601348627, ...];
D: [1, 1, 9, 171, 4797, 173913, 7637649, 391725549, 22936666197, ...];
E: [1, 1, 11, 253, 8481, 363209, 18648685, 1107719349, 74460444575, ...];
F: [1, 1, 13, 351, 13689, 676585, 39800813, 2690422761, 204504278537, ...];
G: [1, 1, 15, 465, 20685, 1159225, 76905145, 5833316697, 495166782107, ...];
H: [1, 1, 17, 595, 29733, 1863353, 137665337, 11583449749, 1086710817325, ...]; ...
PROG
(PARI) /* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* G.f. A(x) results from nested iterations of shifted series: */
{a(n)=local(A=x); for(k=0, n, A=x + x*ITERATE(2*n-2*k+3, A, n)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A365602 A371006 A355092 * A377790 A355099 A209917
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2012
STATUS
approved