login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135863
G.f. A(x) = 1 + 4*x*A(x)^(1/2); A(x) = 1 + 8*x^2 + 4*x*sqrt(1 + 4*x^2).
4
1, 4, 8, 8, 0, -8, 0, 16, 0, -40, 0, 112, 0, -336, 0, 1056, 0, -3432, 0, 11440, 0, -38896, 0, 134368, 0, -470288, 0, 1664096, 0, -5943200, 0, 21395520, 0, -77558760, 0, 282861360, 0, -1037158320, 0, 3821109600, 0, -14138105520, 0, 52512963360, 0, -195730136160
OFFSET
0,2
FORMULA
a(n) = -4^n*binomial(n/2,n)/(n/2 - 1), except a(2) = 8, for n>=0.
G.f.: (exp(asinh(2*x)))^2. - Philippe Deléham, Feb 01 2012
D-finite with recurrence: (-n+1)*a(n) +(-n+2)*a(n-1) +4*(-n+4)*a(n-2) +4*(-n+5)*a(n-3)=0. - R. J. Mathar, Jan 23 2020
From Alexander Burstein, Mar 27 2022: (Start)
G.f. satisfies: A(-x) = 1/A(x).
a(2*n+3) = (-1)^n*8*A000108(n) for n>=0. (End)
PROG
(PARI) a(n)=4^n*if(n==2, 1/2, binomial(n/2, n)/(1-n/2))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 02 2007
STATUS
approved