login
A194686
Number of k in [1,n] for which <n*r>+<k*r> > 1, where < > = fractional part, and r=(1+sqrt(3))/2; row sums of A164685.
5
0, 2, 0, 1, 4, 1, 4, 8, 3, 7, 0, 4, 10, 1, 6, 13, 3, 10, 18, 6, 15, 1, 9, 19, 3, 13, 24, 7, 18, 30, 11, 24, 3, 15, 29, 6, 20, 35, 11, 26, 0, 15, 32, 4, 20, 38, 9, 27, 46, 15, 34, 1, 20, 41, 6, 26, 48, 12, 34, 57, 19, 43, 3, 26, 51, 9, 34, 60, 17, 43, 70, 25, 53, 6, 33, 62
OFFSET
1,2
MATHEMATICA
r = 1/2 + Sqrt[3]/2; z = 15;
p[x_] := FractionalPart[x]; f[x_] := Floor[x];
w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
(* A194683 *)
TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
s[n_] := Sum[w[n, k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A194684 *)
h[n_, k_] := f[p[n*r] + p[k*r]]
Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
(* A194685 *)
TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
t[n_] := Sum[h[n, k], {k, 1, n}]
Table[t[n], {n, 1, 100}] (* A194686 *)
CROSSREFS
Cf. A194684.
Sequence in context: A228924 A246862 A338773 * A302996 A266213 A289522
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 01 2011
STATUS
approved