login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194683
Triangular array: T(n,k)=[<r^n>+<r^k>], where [ ] = floor, < > = fractional part, and r=(1+sqrt(3))/2.
5
0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0
OFFSET
1
COMMENTS
n-th row sum gives number of k in [0,1] for which <r^n>+<r^k> > 1; see A194684.
EXAMPLE
First ten rows:
0
1 1
0 1 1
0 1 1 0
1 1 1 1 1
0 1 1 0 1 0
1 1 1 1 1 1 1
0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 0 1 1
MATHEMATICA
r = 1/2 + Sqrt[3]/2; z = 15;
p[x_] := FractionalPart[x]; f[x_] := Floor[x];
w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
(* A194683 *)
TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
s[n_] := Sum[w[n, k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A194684 *)
h[n_, k_] := f[p[n*r] + p[k*r]]
Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
(* A194685 *)
TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
t[n_] := Sum[h[n, k], {k, 1, n}]
Table[t[n], {n, 1, 100}] (* A194686 *)
CROSSREFS
Cf. A194684.
Sequence in context: A022928 A000494 A022933 * A306710 A188295 A228039
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 01 2011
STATUS
approved