login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194681
Triangular array: T(n,k)=[<n*r>+<k*r>], where [ ] = floor, < > = fractional part, and r=3-sqrt(2).
4
1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
COMMENTS
n-th row sum gives number of k in [0,1] for which <n*r>+<k*r> > 1; see A194678.
EXAMPLE
First ten rows:
1
0 0
1 0 1
0 0 1 0
1 1 1 1 1
1 0 1 0 1 1
0 0 0 0 1 0 0
1 0 1 1 1 1 0 1
0 0 1 0 1 0 0 0 0
1 1 1 1 1 1 0 1 1 1
MATHEMATICA
r = 3 - Sqrt[2]; z = 15;
p[x_] := FractionalPart[x]; f[x_] := Floor[x];
w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
(* A194679 *)
TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
s[n_] := Sum[w[n, k], {k, 1, n}] (* A194680 *)
Table[s[n], {n, 1, 100}]
h[n_, k_] := f[p[n*r] + p[k*r]]
Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
(* A194681 *)
TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
t[n_] := Sum[h[n, k], {k, 1, n}]
Table[t[n], {n, 1, 100}] (* A194682 *)
PROG
(PARI) for(n=1, 10, for(k=1, n, print1(floor(frac(n*(3-sqrt(2))) + frac(k*(3-sqrt(2)))), ", "))) \\ G. C. Greubel, Feb 08 2018
CROSSREFS
Cf. A194682.
Sequence in context: A285076 A338353 A267598 * A359764 A065043 A189298
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 01 2011
STATUS
approved