login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194679
Triangular array: T(n,k)=[<r^n>+<r^k>], where [ ] = floor, < > = fractional part, and r=3-sqrt(2).
5
1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1
OFFSET
1
COMMENTS
n-th row sum gives number of k in [0,1] for which <r^n>+<r^k> > 1; see A194680.
EXAMPLE
First ten rows:
1
1 1
1 1 1
0 0 1 0
0 0 1 0 0
1 1 1 1 0 1
0 0 1 0 0 1 0
1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 1 0
1 1 1 0 0 1 0 1 0 1
MATHEMATICA
r = 3 - Sqrt[2]; z = 15;
p[x_] := FractionalPart[x]; f[x_] := Floor[x];
w[n_, k_] := p[r^n] + p[r^k] - p[r^n + r^k]
Flatten[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
(* A194679 *)
TableForm[Table[w[n, k], {n, 1, z}, {k, 1, n}]]
s[n_] := Sum[w[n, k], {k, 1, n}] (* A194680 *)
Table[s[n], {n, 1, 100}]
h[n_, k_] := f[p[n*r] + p[k*r]]
Flatten[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
(* A194681 *)
TableForm[Table[h[n, k], {n, 1, z}, {k, 1, n}]]
t[n_] := Sum[h[n, k], {k, 1, n}]
Table[t[n], {n, 1, 100}] (* A194682 *)
PROG
(PARI) for(n=1, 20, for(k=1, n, print1(round(frac((3-sqrt(2))^n) + frac((3-sqrt(2))^k) - frac((3-sqrt(2))^n + (3-sqrt(2))^k)), ", "))) \\ G. C. Greubel, Feb 08 2018
CROSSREFS
Cf. A194679.
Sequence in context: A174856 A175608 A285467 * A111940 A129572 A070950
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 01 2011
STATUS
approved