This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228039 Thue-Morse sequence along the squares: A010060(n^2). 3
 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS (Adapted from Drmota, Mauduit, and Rivat) The Thue-Morse sequence T(n) is a 0-1-sequence that can be defined by T(n) = s2(n) mod 2, where s2(n) denotes the binary sum-of-digits function of n (that is, the number of powers of 2). By definition it is clear that 0 and 1 appear with the same asymptotic frequency 1/2. However, there is no consecutive block of the form 000 or 111, so that the Thue-Morse sequence is not normal. (A 0-1-sequence is normal if every finite 0-1-block appears with the asymptotic frequency 1/2^k, where k denotes the length of the block.) Mauduit and Rivat (2009) showed that the subsequence T(n^2) also has the property that both 0 and 1 appear with the same asymptotic frequency 1/2. This solved a long-standing conjecture by Gelfond (1967/1968). Drmota, Mauduit, and Rivat (2013) proved that the subsequence T(n^2) is actually normal. LINKS Antti Karttunen, Table of n, a(n) for n = 0..65537 M. Drmota, C. Mauduit, J. Rivat, The Thue-Morse Sequence Along The Squares is Normal, Abstract, ÖMG-DMV Congress, 2013. A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967/1968) 259-265. C. Mauduit, J. Rivat, La somme des chiffres des carres, Acta Mathem. 203 (1) (2009) 107-148. Wikipedia, Normal number FORMULA a(n) = A010060(n^2) = A010060(A000290(n)). MATHEMATICA a[n_] := If[ n == 0, 0, If[ Mod[n, 2] == 0, a[n/2], 1 - a[(n - 1)/2]]]; Table[ a[n^2], {n, 0, 104}] (* Second program: *) ThueMorse[Range[0, 104]^2] (* Michael De Vlieger, Dec 22 2017 *) PROG (PARI) a(n)=hammingweight(n^2)%2 \\ Charles R Greathouse IV, May 08 2016 CROSSREFS Cf. A000290, A010060, A293162. Sequence in context: A022933 A194683 A188295 * A163532 A014578 A323153 Adjacent sequences:  A228036 A228037 A228038 * A228040 A228041 A228042 KEYWORD nonn,easy AUTHOR Jonathan Sondow, Sep 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 09:35 EST 2019. Contains 319306 sequences. (Running on oeis4.)