login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306710
a(n) = f_n(0), where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways, with conventions that 0^0=1^0=1^1=1, 0^1=0.
5
0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1
COMMENTS
The ordering of the functions f_n is defined in A215703: f_1, f_2, ... = x, x^x, x^(x^2), x^(x^x), x^(x^3), x^(x^x*x), x^(x^(x^2)), x^(x^(x^x)), x^(x^4), x^(x^x*x^2), ... .
FORMULA
Sum_{i=A087803(n-1)+1..A087803(n)} a(i) = A222380(n).
Sum_{i=A087803(n-1)+1..A087803(n)} (1-a(i)) = A222379(n).
EXAMPLE
a(1) = f_1(0) = x_{x=0} = 0.
a(2) = f_2(0) = x^x_{x=0} = 0^0 = 1.
a(3) = f_3(0) = x^(x^2)_{x=0} = 0^(0^2) = 0^0 = 1.
a(4) = f_4(0) = x^(x^x)_{x=0} = 0^(0^0) = 0^1 = 0.
MAPLE
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
end:
a:= proc() local i, l; i, l:= 0, []; proc(n) while n>nops(l)
do i:= i+1; l:= [l[], subs(x=0, T(i))[]] od; l[n] end
end():
seq(a(n), n=1..120);
CROSSREFS
Partial sums give A306726.
Sequence in context: A000494 A022933 A194683 * A188295 A228039 A163532
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 05 2019
STATUS
approved