login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = f_n(0), where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways, with conventions that 0^0=1^0=1^1=1, 0^1=0.
5

%I #23 Mar 06 2019 15:17:57

%S 0,1,1,0,1,1,0,1,1,1,0,1,1,0,0,1,0,1,1,1,1,1,0,1,1,1,1,1,0,0,1,0,0,1,

%T 1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,1,1,0,0,0,

%U 0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1

%N a(n) = f_n(0), where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways, with conventions that 0^0=1^0=1^1=1, 0^1=0.

%C The ordering of the functions f_n is defined in A215703: f_1, f_2, ... = x, x^x, x^(x^2), x^(x^x), x^(x^3), x^(x^x*x), x^(x^(x^2)), x^(x^(x^x)), x^(x^4), x^(x^x*x^2), ... .

%H Alois P. Heinz, <a href="/A306710/b306710.txt">Table of n, a(n) for n = 1..20299</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero">Zero to the power of zero</a>

%F Sum_{i=A087803(n-1)+1..A087803(n)} a(i) = A222380(n).

%F Sum_{i=A087803(n-1)+1..A087803(n)} (1-a(i)) = A222379(n).

%e a(1) = f_1(0) = x_{x=0} = 0.

%e a(2) = f_2(0) = x^x_{x=0} = 0^0 = 1.

%e a(3) = f_3(0) = x^(x^2)_{x=0} = 0^(0^2) = 0^0 = 1.

%e a(4) = f_4(0) = x^(x^x)_{x=0} = 0^(0^0) = 0^1 = 0.

%p T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:

%p g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(

%p seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=

%p combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])

%p end:

%p a:= proc() local i, l; i, l:= 0, []; proc(n) while n>nops(l)

%p do i:= i+1; l:= [l[], subs(x=0, T(i))[]] od; l[n] end

%p end():

%p seq(a(n), n=1..120);

%Y Cf. A000081, A087803, A215703, A222379, A222380.

%Y Partial sums give A306726.

%K nonn

%O 1

%A _Alois P. Heinz_, Mar 05 2019