login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194687
Least k such that the rank of the elliptic curve y^2 = x^3 - k^2*x is n, or -1 if no such k exists.
7
1, 5, 34, 1254, 29274, 48272239, 6611719866
OFFSET
0,2
COMMENTS
Fermat found a(0), Biling found a(1), and Wiman found a(2)-a(4). Rogers found upper bounds on a(5) and a(6) equal to their true value; Rathbun and an unknown author verified them as a(5) and a(6), respectively.
a(7) <= 797507543735, see Rogers 2004.
REFERENCES
G. Billing, "Beiträge zur arithmetischen theorie der ebenen kubischen kurven geschlechteeins", Nova Acta Reg. Soc. Sc. Upsaliensis (4) 11 (1938), Nr. 1. Diss. 165 S.
N. Rogers, "Elliptic curves x^3 + y^2 = k with high rank", PhD Thesis in Mathematics, Harvard University (2004).
A. Wiman, "Über rationale Punkte auf Kurven y^2 = x(x^2-c^2)", Acta Math. 77 (1945), pp. 281-320.
LINKS
Andrej Dujella, Ali S. Janfada, and Sajad Salami, A search for high rank congruent number elliptic curves, Journal of Integer Sequences, Vol. 12 (2009), Article 09.5.8.
Randall L. Rathbun, Posting to NMBRTHRY, Aug 25 2011
N. F. Rogers, Rank computations for the congruent number elliptic curves, Exper. Math. 9:4 (2000), pp. 591-594.
K. Rubin and A. Silverberg, Ranks of elliptic curves, p.464, Table 2.
Mark Watkins, On elliptic curves and random matrix theory, Journal de Theorie des Nombres de Bordeaux
PROG
(PARI) r(n)=ellanalyticrank(ellinit([0, 0, 0, -n^2, 0]))[1]
rec=0; for(n=1, 1e4, t=r(n); if(t>rec, rec=t; print("r("n") = "t)))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
Escape clause added to definition by N. J. A. Sloane, Jul 01 2024
STATUS
approved