login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348375
a(n) = Sum_{k=1..n} (n^k)' where ' is the arithmetic derivative.
0
0, 5, 34, 1252, 3711, 270605, 937924, 225978828, 2578767630, 76913580247, 310989720966, 154447492062352, 326011399456939, 107109225555230817, 3735502983248963648, 627025327447691781152, 875711370981239308953, 872019874471537450417269, 2082225625247428808306410
OFFSET
1,2
EXAMPLE
a(4) = 1252; a(4) = Sum_{k=1..4} (4^k)' = (4^1)' + (4^2)' + (4^3)' + (4^4)' = 4' + 16' + 64' + 256' = 4 + 32 + 192 + 1024 = 1252.
MAPLE
a:= n-> add(n^k*add(i[2]/i[1], i=ifactors(n^k)[2]), k=1..n):
seq(a(n), n=1..19); # Alois P. Heinz, Oct 15 2021
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := Sum[d[n^k], {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Oct 16 2021 *)
CROSSREFS
Cf. A003415.
Sequence in context: A086345 A295545 A309534 * A194687 A208098 A216759
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 15 2021
STATUS
approved