login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} (n^k)' where ' is the arithmetic derivative.
0

%I #10 Oct 16 2021 20:35:43

%S 0,5,34,1252,3711,270605,937924,225978828,2578767630,76913580247,

%T 310989720966,154447492062352,326011399456939,107109225555230817,

%U 3735502983248963648,627025327447691781152,875711370981239308953,872019874471537450417269,2082225625247428808306410

%N a(n) = Sum_{k=1..n} (n^k)' where ' is the arithmetic derivative.

%e a(4) = 1252; a(4) = Sum_{k=1..4} (4^k)' = (4^1)' + (4^2)' + (4^3)' + (4^4)' = 4' + 16' + 64' + 256' = 4 + 32 + 192 + 1024 = 1252.

%p a:= n-> add(n^k*add(i[2]/i[1], i=ifactors(n^k)[2]), k=1..n):

%p seq(a(n), n=1..19); # _Alois P. Heinz_, Oct 15 2021

%t d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := Sum[d[n^k], {k, 1, n}]; Array[a, 20] (* _Amiram Eldar_, Oct 16 2021 *)

%Y Cf. A003415.

%K nonn

%O 1,2

%A _Wesley Ivan Hurt_, Oct 15 2021