login
A194690
G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n * x^n/(1 - x^n)^n.
1
1, 1, 3, 8, 26, 82, 285, 995, 3613, 13319, 50053, 190459, 733555, 2851945, 11181927, 44155907, 175470374, 701164361, 2815635000, 11356456980, 45986353012, 186882752814, 761942170718, 3115758466971, 12775760835540, 52516539411929, 216375430357044, 893403847582583
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 82*x^5 + 285*x^6 +...
where
A(x) = 1 + A(x)*x/(1-x) + A(x)^2*x^2/(1-x^2)^2 + A(x)^3*x^3/(1-x^3)^3 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, A^m*x^m/(1-x^m+x*O(x^n))^m)); polcoeff(A, n)}
CROSSREFS
Cf. A194691.
Sequence in context: A331320 A148802 A255712 * A148803 A148804 A148805
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 01 2011
STATUS
approved