login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A331320 a(n) = [x^n] ((x + 1)*(2*x - 1)*(2*x^2 - 1))/(2*x^2 + 2*x - 1)^2. 3
1, 3, 8, 26, 80, 244, 736, 2200, 6528, 19248, 56448, 164768, 478976, 1387328, 4005376, 11530624, 33107968, 94839552, 271091712, 773380608, 2202374144, 6261404672, 17774206976, 50384312320, 142636515328, 403306786816, 1139055820800, 3213593911296, 9057375289344 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A322942(n,k)*(k+1).
a(n) = (12*(n - 3)*a(n-3) + (14*n - 6)*a(n-2) + (70 - 4*n)*a(n-1))/(n + 19).
Let h(k) = (1+k)*exp((1+k)*x)*(3*x+12-4*k)/18 then
a(n) = n!*[x^n](h(sqrt(3)) + h(-sqrt(3)) + 1).
From Colin Barker, Jan 14 2020: (Start)
a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4) for n>4.
a(n) = (-8*sqrt(3)*((1-sqrt(3))^n - (1+sqrt(3))^n) + 3*((1-sqrt(3))^n + (1+sqrt(3))^n)*n) / 18 for n>0.
(End)
MAPLE
a := proc(n) option remember; if n < 3 then return [1, 3, 8][n+1] fi;
(12*(n - 3)*a(n-3) + (14*n - 6)*a(n-2) + (70 - 4*n)*a(n-1))/(n+19) end:
seq(a(n), n=0..28);
# Alternative:
gf := ((x + 1)*(2*x - 1)*(2*x^2 - 1))/(2*x^2 + 2*x - 1)^2:
ser := series(gf, x, 32): seq(coeff(ser, x, n), n=0..28);
PROG
(PARI) Vec((1 + x)*(1 - 2*x)*(1 - 2*x^2) / (1 - 2*x - 2*x^2)^2 + O(x^30)) \\ Colin Barker, Jan 14 2020
CROSSREFS
Cf. A322942 (Jacobsthal triangle), A331319, A331321.
Sequence in context: A148801 A131910 A205775 * A148802 A255712 A194690
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 14 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)