%I #11 Aug 24 2024 10:52:11
%S 1,1,3,8,26,82,285,995,3613,13319,50053,190459,733555,2851945,
%T 11181927,44155907,175470374,701164361,2815635000,11356456980,
%U 45986353012,186882752814,761942170718,3115758466971,12775760835540,52516539411929,216375430357044,893403847582583
%N G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n * x^n/(1 - x^n)^n.
%e G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 82*x^5 + 285*x^6 +...
%e where
%e A(x) = 1 + A(x)*x/(1-x) + A(x)^2*x^2/(1-x^2)^2 + A(x)^3*x^3/(1-x^3)^3 +...
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, A^m*x^m/(1-x^m+x*O(x^n))^m)); polcoeff(A, n)}
%Y Cf. A194691.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Sep 01 2011