login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332698
a(n) = (8*n^3 + 15*n^2 + 13*n)/6.
1
0, 6, 25, 65, 134, 240, 391, 595, 860, 1194, 1605, 2101, 2690, 3380, 4179, 5095, 6136, 7310, 8625, 10089, 11710, 13496, 15455, 17595, 19924, 22450, 25181, 28125, 31290, 34684, 38315, 42191, 46320, 50710, 55369, 60305, 65526, 71040, 76855, 82979, 89420, 96186
OFFSET
0,2
COMMENTS
The end values of the partial rows on the main diagonal of A332662 in the representation in the example section.
FORMULA
a(n) = [x^n] (x*(x^2 + x + 6))/(x - 1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2) + binomial(n, 1) = A331987(n) + n.
MAPLE
a := n -> (8*n^3 + 15*n^2 + 13*n)/6: seq(a(n), n=0..41);
gf := (x*(x^2 + x + 6))/(x - 1)^4: ser := series(gf, x, 44):
seq(coeff(ser, x, n), n=0..41);
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 6, 25, 65}, 42]
Table[(8n^3+15n^2+13n)/6, {n, 0, 50}] (* Harvey P. Dale, Sep 13 2024 *)
CROSSREFS
Sequence in context: A022270 A001664 A255687 * A096958 A166814 A241170
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Feb 20 2020
STATUS
approved