login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (8*n^3 + 15*n^2 + 13*n)/6.
1

%I #9 Sep 13 2024 18:04:23

%S 0,6,25,65,134,240,391,595,860,1194,1605,2101,2690,3380,4179,5095,

%T 6136,7310,8625,10089,11710,13496,15455,17595,19924,22450,25181,28125,

%U 31290,34684,38315,42191,46320,50710,55369,60305,65526,71040,76855,82979,89420,96186

%N a(n) = (8*n^3 + 15*n^2 + 13*n)/6.

%C The end values of the partial rows on the main diagonal of A332662 in the representation in the example section.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).

%F a(n) = [x^n] (x*(x^2 + x + 6))/(x - 1)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

%F a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2) + binomial(n, 1) = A331987(n) + n.

%p a := n -> (8*n^3 + 15*n^2 + 13*n)/6: seq(a(n), n=0..41);

%p gf := (x*(x^2 + x + 6))/(x - 1)^4: ser := series(gf, x, 44):

%p seq(coeff(ser, x, n), n=0..41);

%t LinearRecurrence[{4, -6, 4, -1}, {0, 6, 25, 65}, 42]

%t Table[(8n^3+15n^2+13n)/6,{n,0,50}] (* _Harvey P. Dale_, Sep 13 2024 *)

%Y Cf. A332662, A331987.

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Feb 20 2020