login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102095
Greatest edge length of a cuboid having integer edge lengths, volume n and minimal surface area under those restrictions.
3
1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 4, 17, 3, 19, 5, 7, 11, 23, 4, 5, 13, 3, 7, 29, 5, 31, 4, 11, 17, 7, 4, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 4, 7, 5, 17, 13, 53, 6, 11, 7, 19, 29, 59, 5, 61, 31, 7, 4, 13, 11, 67, 17, 23, 7, 71, 6, 73, 37, 5, 19, 11, 13, 79, 5, 9, 41, 83, 7
OFFSET
1,2
COMMENTS
Finding a(n) given n is a fundamental problem from integer nonlinear programming, equivalent to minimizing the sum a+b+c when a*b*c=n and a,b,c are integers. a(n) is not strictly prime. a(n) > 1 for all n>1 a(n) <= n for all n. a(n) = n iff n is prime (a(1)=1).
LINKS
Eric Weisstein's World of Mathematics, Cuboid
Eric Weisstein's World of Mathematics, Sample Variance
EXAMPLE
a(16) = 4 because the cuboid of integer edge lengths, volume = 16 and minimal possible surface area under those restrictions has edge lengths {4,2,2}
MATHEMATICA
Clear[fac, faclist, red, bool, n, a, b, c, i, ai, bi, ci]
red[n_] := Reduce[{a*b*c == n, a >= b >= c > 0}, {a, b, c}, Integers];
faclist[n_] := (
If[PrimeQ[n] || n == 1, Return[{n + 1 + 1, {n, 1, 1}}]; Abort[]];
bool = red[n];
Reap[For[i = 1, i <= Length[bool], i++,
ai = bool[[i]][[1]][[2]];
bi = bool[[i]][[2]][[2]];
ci = bool[[i]][[3]][[2]];
Sow[{ai + bi + ci, {ai, bi, ci}}]]][[2]][[1]])
fac[n_] := (
If[PrimeQ[n] || n == 1, Return[{n, 1, 1}]; Abort[]];
faclist[n][[1]][[2]])
Table[fac[k][[1]], {k, 1, 84}]
CROSSREFS
Sequence in context: A006530 A327398 A323616 * A331959 A109395 A145254
KEYWORD
nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 29 2004
STATUS
approved