login
A204675
a(n) = 16*n^2 + 2*n + 1.
3
1, 19, 69, 151, 265, 411, 589, 799, 1041, 1315, 1621, 1959, 2329, 2731, 3165, 3631, 4129, 4659, 5221, 5815, 6441, 7099, 7789, 8511, 9265, 10051, 10869, 11719, 12601, 13515, 14461, 15439, 16449, 17491, 18565, 19671, 20809, 21979, 23181, 24415, 25681, 26979
OFFSET
0,2
COMMENTS
Central terms of the triangle A033293.
Also sequence found by reading the line from 1, in the direction 1, 19, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
FORMULA
G.f.: (1+x)*(1+15*x)/(1-x)^3. - Bruno Berselli, Jan 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Jun 09 2023
E.g.f.: exp(x)*(1 + 2*x*(9 + 8*x)). - Elmo R. Oliveira, Oct 18 2024
MATHEMATICA
CoefficientList[Series[(1+x)*(1+15*x)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 19, 69}, 50] (* Vincenzo Librandi, Mar 19 2012 *)
PROG
(Haskell)
a204675 n = 2 * n * (8 * n + 1) + 1
(Magma) I:=[1, 19, 69]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 19 2012
(PARI) a(n)=16*n^2+2*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jan 18 2012
STATUS
approved