login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007546 Number of steps to compute n-th prime in PRIMEGAME (fast version).
(Formerly M5074)
7
19, 69, 280, 707, 2363, 3876, 8068, 11319, 19201, 36866, 45551, 75224, 101112, 117831, 152025, 215384, 293375, 327020, 428553, 507519, 555694, 700063, 808331, 989526, 1273490, 1434366, 1530213, 1710923, 1818254, 2019962, 2833089, 3104685 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

J. H. Conway, FRACTRAN: a simple universal programming language for arithmetic, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26.

R. K. Guy, Conway's prime producing machine, Math. Mag. 56 (1983), no. 1, 26-33.

Wikipedia, Conway's PRIMEGAME

MAPLE

with(numtheory): f:= proc(n) local l, b, d; l:= sort([divisors (n)[]]); b:= l[nops(l)-1]; n-1 +(6*n+2)*(n-b) +2*add(floor(n/d), d=b..n-1) end: a:= proc(n) option remember; `if`(n=1, f(2), a(n-1) +add(f(i), i=ithprime(n-1)+1..ithprime(n))) end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 12 2009

MATHEMATICA

f[n_] := Module[{l, b, d}, l = Divisors [n]; b = l[[-2]]; n-1 + (6*n+2)*(n-b) + 2*Sum[Floor[n/d], {d, b, n-1}]]; a[n_] := a[n] = If[n == 1, f[2], a[n-1] + Sum[f[i], {i, Prime[n-1]+1, Prime[n]}]]; Table[a[n], {n, 1, 32}] (* Jean-Fran├žois Alcover, Oct 04 2013, translated from Alois P. Heinz's Maple program *)

CROSSREFS

Cf. A007542, A007547.

Sequence in context: A297226 A300463 A204675 * A007547 A217081 A010007

Adjacent sequences:  A007543 A007544 A007545 * A007547 A007548 A007549

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Alois P. Heinz, Aug 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 06:36 EST 2020. Contains 332299 sequences. (Running on oeis4.)