login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006790
Exponentiation of e.g.f. for trees A000055(n-1).
1
1, 2, 5, 15, 53, 211, 938, 4582, 24349, 139671, 858745, 5628789, 39145021, 287667582, 2226033629, 18082308403, 153770703339, 1365631349757, 12638233544989, 121640399661294, 1215438543434225, 12587691428792115
OFFSET
0,2
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<=1, n, add(add(d*
b(d), d=divisors(j))*b(n-j), j=1..n-1)/(n-1))
end:
t:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)
*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1) *t(j-1) *g(n-j), j=1..n))
end:
a:= n-> g(n+1):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 16 2015
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; t[n_] := t[n] = If[n==0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2]; g[n_] := g[n] = If[n==0, 1, Sum[Binomial[n-1, j-1] *t[j-1]*g[n-j], {j, 1, n}]]; a[n_] := g[n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A000055.
Sequence in context: A107589 A249892 A352853 * A007548 A360052 A328431
KEYWORD
nonn
AUTHOR
STATUS
approved