login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290925 p-INVERT of the positive integers, where p(S) = 1 - 3*S - 2*S^2. 2
3, 17, 92, 495, 2661, 14304, 76891, 413329, 2221860, 11943663, 64203453, 345127232, 1855239875, 9972887313, 53609499612, 288179176047, 1549114207525, 8327301302176, 44763611772699, 240627889663761, 1293501104827044, 6953246818258415, 37377348295412093 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A290890 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7, -10, 7, -1)

FORMULA

G.f.: (3 - 4 x + 3 x^2)/(1 - 7 x + 10 x^2 - 7 x^3 + x^4).

a(n) = 7*a(n-1) - 10*a(n-2) + 7*a(n-3) - a(n-4).

MATHEMATICA

z = 60; s = x/(1 - x)^2; p = 1 - 3 s - 2 s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)

u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290925 *)

CROSSREFS

Cf. A000027, A290890.

Sequence in context: A240652 A204092 A221731 * A020056 A086842 A151330

Adjacent sequences:  A290922 A290923 A290924 * A290926 A290927 A290928

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 15:33 EDT 2021. Contains 342845 sequences. (Running on oeis4.)