login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290922
p-INVERT of the positive integers, where p(S) = 1 - S - 2*S^2.
2
1, 5, 20, 75, 279, 1040, 3881, 14485, 54060, 201755, 752959, 2810080, 10487361, 39139365, 146070100, 545141035, 2034494039, 7592835120, 28336846441, 105754550645, 394681356140, 1472970873915, 5497202139519, 20515837684160, 76566148597121, 285748756704325
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.
FORMULA
G.f.: (1 + x^2)/(1 - 5 x + 6 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 6*a(n-2) + 5*a(n-3) - a(n-4).
MATHEMATICA
z = 60; s = x/(1 - x)^2; p = 1 - s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290922 *)
LinearRecurrence[{5, -6, 5, -1}, {1, 5, 20, 75}, 30] (* Vincenzo Librandi, Aug 19 2017 *)
PROG
(Magma) I:=[1, 5, 20, 75]; [n le 4 select I[n] else 5*Self(n-1)- 6*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 19 2017
CROSSREFS
Sequence in context: A093131 A224422 A000344 * A275909 A275908 A290909
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 18 2017
STATUS
approved