|
|
A337277
|
|
Stern's triangle read by rows.
|
|
5
|
|
|
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
The first two rows are 1, then 1,1,1. To get row n, copy row n-1, and insert c+d between every pair of adjacent terms c,d, and finally insert a 1 at the beginning and end of the row.
|
|
REFERENCES
|
Stanley, Richard P. "Some Linear Recurrences Motivated by Stern’s Diatomic Array." The American Mathematical Monthly 127.2 (2020): 99-111.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Triangle begins:
1;
1, 1, 1;
1, 1, 2, 1, 2, 1, 1;
1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 1;
1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1;
...
|
|
MAPLE
|
T:= proc(n) option remember; `if`(n=0, 1, (L-> [1, L[1], seq(
[L[i-1]+L[i], L[i]][], i=2..nops(L)), 1][])([T(n-1)]))
end:
|
|
MATHEMATICA
|
Nest[Append[#, Flatten@ Join[{1}, If[Length@ # > 1, Map[{#1, #1 + #2} & @@ # &, Partition[#[[-1]], 2, 1] ], {}], {#[[-1, -1]]}, {1}]] &, {{1}}, 5] // Flatten (* Michael De Vlieger, Sep 09 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|