login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337278
Array read by antidiagonals: T(m,n) (m>=1, n>=1) is number of graceful labelings of the complete bipartite graph K_{m,n}.
3
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 1, 5, 1, 1, 2, 4, 4, 2, 1, 1, 4, 2, 4, 2, 4, 1, 1, 8, 4, 4, 4, 4, 8, 1, 1, 4, 3, 10, 1, 10, 3, 4, 1, 1, 3, 4, 5, 4, 4, 5, 4, 3, 1, 1, 14, 3, 11, 3, 7, 3, 11, 3, 14, 1, 1, 2, 5, 7, 4, 5, 5, 4, 7, 5, 2, 1, 1, 10, 2, 11, 3, 16, 2, 16, 3, 11, 2, 10, 1
OFFSET
1,8
COMMENTS
A graceful labeling of a graph with q edges is an assignment of distinct numbers f(v) in {0,...,q} to the vertices in such a way that an edge between u and v is uniquely identified by |f(u)-f(v)|. In other words, for each j in {1,...,q} there's exactly one edge such that |f(u)-f(v)|=j.
We don't distinguish between a labeling and its complement with respect to q. (The complement is obtained by changing f(v) to q-f(v) for each v.) We also don't distinguish between labelings that differ only because of automorphisms of the graph.
In the case of K_{m,n} we have, of course, q=mn edges. This graph has m!n! automorphisms when m<>n, and 2m!n! automorphisms when m=n. According to our conventions, K_{2,2} has only one graceful labeling, namely
0,1 | 2,4
[meaning that the labels in one part are {0,1} and the labels in the other part are {2,4}]; but 16 different functions f actually satisfy the conditions: 8 because of the automorphisms, times 2 for complement. The complement of the labeling above is
0,2 | 3,4
Here's another example: There are four graceful ways to label K_{3,4} namely
0,1,2 | 3,6,9,12
0,2,4 | 5,6,11,12
0,3,7 | 1,10,11,12
0,4,8 | 9,10,11,12
LINKS
Joseph A. Gallian, Graph Labeling, Electron. J. Combin., Dynamic Survey 6.
EXAMPLE
The array begins:
..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1,...
..1..1..2..5..2..4..8..4..3.14..2.10.20..4..4.39,...
..1..2..1..4..2..4..3..4..3..5..2..6..3..4..4..6,...
..1..5..4..4..4.10..5.11..7.11..4.19..5.10.10.17,...
..1..2..2..4..1..4..3..4..3..5..2..6..3..4..4..6,...
..1..4..4.10..4..7..5.16..9.15..4.30..5.14.14.26,...
..1..8..3..5..3..5..2..5..4..6..3..7..4..5..5..7,...
..1..4..4.11..4.16..5.10.10.17..4.40..5.16.16.36,...
..1..3..3..7..3..9..4.10..3.10..3.18..4..9..9.16,...
..1.14..5.11..5.15..6.17.10..8..5.31..6.15.15.27,...
..1..2..2..4..2..4..3..4..3..5..1..6..3..4..4..6,...
..1.10..6.19..6.30..7.40.18.31..6.42..7.30.30.76,...
..1.20..3..5..3..5..4..5..4..6..3..7..2..5..5..7,...
..1..4..4.10..4.14..5.16..9.15..4.30..5..7.14.26,...
..1..4..4.10..4.14..5.16..9.15..4.30..5.14..7.26,...
..1.39..6.17..6.26..7.36.16.27..6.76..7.26.26.36,...
...
The first few antidiagonals are:
1,
1,1,
1,1,1,
1,2,2,1,
1,5,1,5,1,
1,2,4,4,2,1,
1,4,2,4,2,4,1,
1,8,4,4,4,4,8,1,
1,4,3,10,1,10,3,4,1,
...
CROSSREFS
Cf. A337279.
Sequence in context: A064552 A209543 A178655 * A178304 A123585 A145668
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Sep 11 2020, based on a communication from Don Knuth, Sep 08 2020
STATUS
approved