login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178655 Triangle which contains the first differences of the Catalan triangle A001263 constructed along rows. 1
1, 1, -1, 1, 0, -1, 1, 2, -2, -1, 1, 5, 0, -5, -1, 1, 9, 10, -10, -9, -1, 1, 14, 35, 0, -35, -14, -1, 1, 20, 84, 70, -70, -84, -20, -1, 1, 27, 168, 294, 0, -294, -168, -27, -1, 1, 35, 300, 840, 588, -588, -840, -300, -35, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n,k) = -T(n,n-k), n > 0.

T(n,k) = A001263(n,k+1) - A001263(n,k), n > 0. - R. J. Mathar, Jun 16 2015

EXAMPLE

Triangle begins

1;

1, -1;

1, 0, -1;

1, 2, -2, -1;

1, 5, 0, -5, -1;

1, 9, 10, -10, -9, -1;

1, 14, 35, 0, -35, -14, -1;

1, 20, 84, 70, -70, -84, -20, -1;

1, 27, 168, 294, 0, -294, -168, -27, -1;

1, 35, 300, 840, 588, -588, -840, -300, -35, -1;

MATHEMATICA

Join[{1}, Table[((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))*Binomial[n, k]^2, {n, 1, 10}, {k, 0, n}]//Flatten] (* G. C. Greubel, Jan 28 2019 *)

PROG

(PARI) {T(n, k) = if(n==0, 1, ((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))* binomial(n, k)^2)};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 28 2019

(Magma) [[n le 0 select 1 else ((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))*Binomial(n, k)^2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 28 2019

(Sage) [1] + [[((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))* binomial(n, k)^2 for k in (0..n)] for n in (1..10)] # G. C. Greubel, Jan 28 2019

CROSSREFS

Cf. A001263, A000007 (row sums).

Sequence in context: A361014 A064552 A209543 * A337278 A178304 A123585

Adjacent sequences: A178652 A178653 A178654 * A178656 A178657 A178658

KEYWORD

sign,tabl,easy

AUTHOR

Roger L. Bagula, Jun 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 12:55 EDT 2023. Contains 361691 sequences. (Running on oeis4.)