login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178655
Triangle which contains the first differences of the Catalan triangle A001263 constructed along rows.
1
1, 1, -1, 1, 0, -1, 1, 2, -2, -1, 1, 5, 0, -5, -1, 1, 9, 10, -10, -9, -1, 1, 14, 35, 0, -35, -14, -1, 1, 20, 84, 70, -70, -84, -20, -1, 1, 27, 168, 294, 0, -294, -168, -27, -1, 1, 35, 300, 840, 588, -588, -840, -300, -35, -1
OFFSET
0,8
FORMULA
T(n,k) = -T(n,n-k), n > 0.
T(n,k) = A001263(n,k+1) - A001263(n,k), n > 0. - R. J. Mathar, Jun 16 2015
EXAMPLE
Triangle begins
1;
1, -1;
1, 0, -1;
1, 2, -2, -1;
1, 5, 0, -5, -1;
1, 9, 10, -10, -9, -1;
1, 14, 35, 0, -35, -14, -1;
1, 20, 84, 70, -70, -84, -20, -1;
1, 27, 168, 294, 0, -294, -168, -27, -1;
1, 35, 300, 840, 588, -588, -840, -300, -35, -1;
MATHEMATICA
Join[{1}, Table[((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))*Binomial[n, k]^2, {n, 1, 10}, {k, 0, n}]//Flatten] (* G. C. Greubel, Jan 28 2019 *)
PROG
(PARI) {T(n, k) = if(n==0, 1, ((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))* binomial(n, k)^2)};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 28 2019
(Magma) [[n le 0 select 1 else ((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))*Binomial(n, k)^2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 28 2019
(Sage) [1] + [[((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))* binomial(n, k)^2 for k in (0..n)] for n in (1..10)] # G. C. Greubel, Jan 28 2019
CROSSREFS
Cf. A001263, A000007 (row sums).
Sequence in context: A361014 A064552 A209543 * A337278 A178304 A123585
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, Jun 01 2010
STATUS
approved