OFFSET
0,3
COMMENTS
The even-numbered terms are the same as the three - quarter squares; the odd-numbered terms are one less.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Craig Knecht, Maximum number of octiamonds in a hexagon.
Robert Munafo, Sequence MCS429697.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = a(n-2) + 3*(n-1) for n>1, a(0) = a(1) = 0.
From Bruno Berselli, May 22 2014: (Start)
G.f.: 3*x^2/((1-x)^2*(1-x^2)).
a(n) = 3*A002620(n). (End)
Sum_{n>=2} 1/a(n) = Pi^2/18 + 1/3. - Amiram Eldar, Feb 16 2023
MATHEMATICA
Table[Floor[3 n^2/4], {n, 0, 60}]
LinearRecurrence[{2, 0, -2, 1}, {0, 0, 3, 6}, 60] (* Harvey P. Dale, Sep 07 2019 *)
PROG
(Magma) [Floor(3*n^2/4): n in [0..60]];
(Sage) [3*floor(n^2/4) for n in (0..60)] # Bruno Berselli, May 22 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 22 2014
STATUS
approved