login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242478 Primes p such that, in base 17, p = the cumulative sum of the digit-mult(digit-sum(prime)) of each prime < p. 0
5, 57839, 58013, 105683, 160367, 926899, 926983, 927007, 928819, 963121, 963223, 2329777, 2384821, 2384881, 3228713, 3228751, 3229081, 3229097, 3246653, 3259547, 7327781, 7339447 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..22.

FORMULA

The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, in base 17, digit-mult(digit-sum(9999)) = digit-mult(22) = 2 * 2 = 4 (22 in base 17 = 36 in base 10).

EXAMPLE

5 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)). 57839 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)) + ...  digit-mult(digit-sum(BD1C)) = digit-mult(2) + digit-mult(3) + ... digit-mult(23) = 2 + 3 + ... 2*3. Note that BD1C and 23 in base 17 = 57829 and 37 in base 10.

CROSSREFS

Cf. A240886.

Sequence in context: A167369 A259161 A242833 * A247845 A050816 A171981

Adjacent sequences:  A242475 A242476 A242477 * A242479 A242480 A242481

KEYWORD

nonn,base

AUTHOR

Anthony Sand, May 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 21:19 EDT 2021. Contains 346441 sequences. (Running on oeis4.)