%I #10 May 21 2014 00:21:48
%S 5,57839,58013,105683,160367,926899,926983,927007,928819,963121,
%T 963223,2329777,2384821,2384881,3228713,3228751,3229081,3229097,
%U 3246653,3259547,7327781,7339447
%N Primes p such that, in base 17, p = the cumulative sum of the digit-mult(digit-sum(prime)) of each prime < p.
%F The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, in base 17, digit-mult(digit-sum(9999)) = digit-mult(22) = 2 * 2 = 4 (22 in base 17 = 36 in base 10).
%e 5 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)). 57839 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)) + ... digit-mult(digit-sum(BD1C)) = digit-mult(2) + digit-mult(3) + ... digit-mult(23) = 2 + 3 + ... 2*3. Note that BD1C and 23 in base 17 = 57829 and 37 in base 10.
%Y Cf. A240886.
%K nonn,base
%O 1,1
%A _Anthony Sand_, May 16 2014