The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A356762 Primes p such that, if q is the next prime, p*q+p+q, p*q-p-q, p*q+2*(p+q) and p*q-2*(p+q) are all prime. 2
 5, 50929, 74759, 127541, 349849, 1287731, 1294753, 3941711, 4190023, 6130739, 6310061, 6593329, 6816973, 7347709, 7573849, 8690351, 9813409, 10985959, 11703187, 12130553, 12504001, 18032059, 18468763, 20207471, 21357191, 23635603, 24301309, 25078181, 28509521, 28729567, 28855459, 30200411, 31304239 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..1000 EXAMPLE a(3) = 74759 is a term because it is prime, the next prime is 74761, and 74759*74761 + 74759 + 74761 = 5589207119 74759*74761 - 74759 - 74761 = 5588908079 74759*74761 + 2*(74759 + 74761) = 5589356639 74759*74761 - 2*(74759 + 74761) = 5588758559 are all prime. MAPLE q:= 2: R:= NULL: count:= 0: while count < 40 do p:= q; q:= nextprime(q); if isprime(p*q+p+q) and isprime(p*q-p-q) and isprime(p*q+2*p+2*q) and isprime(p*q-2*p-2*q) then count:= count+1; R:= R, p; fi od: R; MATHEMATICA Select[Partition[Prime[Range[2*10^6]], 2, 1], AllTrue[{(p = #[[1]])*(q = #[[2]]) + p + q, p*q - p - q, p*q + 2*(p + q), p*q - 2*(p + q)}, PrimeQ] &][[;; , 1]] (* Amiram Eldar, Aug 26 2022 *) PROG (Python) from sympy import isprime, nextprime from itertools import count, islice def agen(): # generator of terms p, q = 2, 3 while True: if all(isprime(t) for t in [p*q+p+q, p*q-p-q, p*q+2*(p+q), p*q-2*(p+q)]): yield p p, q = q, nextprime(q) print(list(islice(agen(), 15))) # Michael S. Branicky, Aug 26 2022 CROSSREFS Cf. A356765. Sequence in context: A165711 A167369 A259161 * A242833 A242478 A247845 Adjacent sequences: A356759 A356760 A356761 * A356763 A356764 A356765 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Aug 26 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 05:56 EST 2022. Contains 358512 sequences. (Running on oeis4.)