login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356765
Semiprimes p*q such that p*q+p+q, p*q-(p+q), p*q+2*(p+q) and p*q-2*(p+q) are all primes.
2
33, 35, 65, 111, 209, 321, 371, 395, 545, 815, 1385, 1841, 1865, 4101, 5241, 6119, 6905, 8735, 10361, 13061, 14811, 15321, 16145, 18689, 22235, 25079, 32405, 36095, 38789, 39395, 43739, 43829, 43881, 49745, 50811, 52331, 57701, 59195, 60035, 62765, 65561, 71931, 72329, 76019, 77135, 79751, 81311, 84395
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 65 = 5*13 is a term because 5*13+5+13 = 83, 5*13-(5+13) = 47, 5*13+2*(5+13) = 101 and 5*13-2*(5+13) = 29 are all prime.
MAPLE
filter:= proc(n) local s;
if numtheory:-bigomega(n) <> 2 or issqr(n) then return false fi;
s:= convert( numtheory:-factorset(n), `+`);;
isprime(n+s)
and isprime(n-s)
and isprime(n+2*s) and isprime(n-2*s)
end proc:
select(filter, [seq(i, i=1..10^5, 2)]);
MATHEMATICA
Select[Range[10^5], (f = FactorInteger[#])[[;; , 2]] == {1, 1} && AllTrue[{(p = f[[1, 1]])*(q = f[[2, 1]]) + p + q, p*q - (p + q), p*q + 2*(p + q), p*q - 2*(p + q)}, PrimeQ] &] (* Amiram Eldar, Aug 26 2022 *)
CROSSREFS
Sequence in context: A144425 A180329 A367782 * A020260 A345500 A345501
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 26 2022
STATUS
approved