login
A356765
Semiprimes p*q such that p*q+p+q, p*q-(p+q), p*q+2*(p+q) and p*q-2*(p+q) are all primes.
2
33, 35, 65, 111, 209, 321, 371, 395, 545, 815, 1385, 1841, 1865, 4101, 5241, 6119, 6905, 8735, 10361, 13061, 14811, 15321, 16145, 18689, 22235, 25079, 32405, 36095, 38789, 39395, 43739, 43829, 43881, 49745, 50811, 52331, 57701, 59195, 60035, 62765, 65561, 71931, 72329, 76019, 77135, 79751, 81311, 84395
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 65 = 5*13 is a term because 5*13+5+13 = 83, 5*13-(5+13) = 47, 5*13+2*(5+13) = 101 and 5*13-2*(5+13) = 29 are all prime.
MAPLE
filter:= proc(n) local s;
if numtheory:-bigomega(n) <> 2 or issqr(n) then return false fi;
s:= convert( numtheory:-factorset(n), `+`);;
isprime(n+s)
and isprime(n-s)
and isprime(n+2*s) and isprime(n-2*s)
end proc:
select(filter, [seq(i, i=1..10^5, 2)]);
MATHEMATICA
Select[Range[10^5], (f = FactorInteger[#])[[;; , 2]] == {1, 1} && AllTrue[{(p = f[[1, 1]])*(q = f[[2, 1]]) + p + q, p*q - (p + q), p*q + 2*(p + q), p*q - 2*(p + q)}, PrimeQ] &] (* Amiram Eldar, Aug 26 2022 *)
CROSSREFS
Sequence in context: A144425 A180329 A367782 * A020260 A345500 A345501
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 26 2022
STATUS
approved