login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356767
Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.
0
1518, 2046, 2226, 2262, 2418, 2478, 2618, 2622, 2814, 2838, 2886, 3135, 3927, 4170, 4182, 4386, 4389, 4746, 4785, 4935, 5313, 5394, 5406, 5478, 5565, 5655, 5838, 5874, 6018, 6045, 6222, 6402, 6438, 6474, 6486, 6690, 6699, 6834, 6846, 6882, 7293, 7458, 8106, 8142
OFFSET
1,1
COMMENTS
Palindromic tetraprimes are A046394.
The corresponding sequence for three distinct primes is A270175.
EXAMPLE
1518 = 2*3*11*23 is a tetraprime. Its reversal 8151 = 3*11*13*19 is another tetraprime. Thus, 1518 is in this sequence.
MATHEMATICA
Select[Range[10000], Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[#]]]]][[2]] == {1, 1, 1, 1} && IntegerDigits[#] != Reverse[IntegerDigits[#]] && Transpose[FactorInteger[#]][[2]] == {1, 1, 1, 1} &]
PROG
(Python)
from sympy import factorint
def tetra(n): return list(factorint(n).values()) == [1, 1, 1, 1]
def ok(n):
if not tetra(n): return False
revn = int(str(n)[::-1])
return n != revn and tetra(revn)
print([k for k in range(9000) if ok(k)]) # Michael S. Branicky, Aug 27 2022
CROSSREFS
Sequence in context: A257753 A236724 A206654 * A112641 A203386 A157375
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Aug 26 2022
STATUS
approved