login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029743 Primes with distinct digits. 32
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 317, 347, 349, 359, 367, 379, 389 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This sequence has 283086 terms, the last being 987654103 = A007810(9). - Jud McCranie
Intersection of A010784 and A000040; A178788(a(n)) * A010051(a(n)) = 1. [Reinhard Zumkeller, Sep 25 2011]
LINKS
Patrick De Geest, World!Of Numbers
MATHEMATICA
t={}; Do[p=Prime[n]; If[Select[Transpose[Tally[IntegerDigits[p]]][[2]], #>1 &]=={}, AppendTo[t, p]], {n, 77}]; t (* Jayanta Basu, May 04 2013 *)
Select[Prime[Range[80]], Max[DigitCount[#]]<2&] (* Harvey P. Dale, Sep 13 2020 *)
PROG
(Haskell)
a029743 n = a029743_list !! (n-1)
a029743_list = filter ((== 1) . a010051) a010784_list
-- Reinhard Zumkeller, Sep 25 2011
(Python)
from sympy import isprime
from itertools import permutations as P
dist = [p for d in range(1, 11) for p in P("0123456789", d) if p[0] != "0"]
afull = [t for t in (int("".join(p)) for p in dist) if isprime(t)]
print(afull[:100]) # Michael S. Branicky, Aug 04 2022
CROSSREFS
Sequence in context: A059168 A032758 A106118 * A344620 A042990 A040169
KEYWORD
nonn,fini,full,base
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 13:32 EDT 2024. Contains 373648 sequences. (Running on oeis4.)