|
|
A040169
|
|
Primes p such that x^5 = 6 has a solution mod p.
|
|
2
|
|
|
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 173, 179, 191, 193, 197, 199, 223, 227, 229, 233, 239, 257, 263, 269, 277
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MATHEMATICA
|
ok [p_]:=Reduce[Mod[x^5 - 6, p]== 0, x, Integers]=!= False; Select[Prime[Range[130]], ok] (* Vincenzo Librandi, Sep 12 2012 *)
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^5 eq 6}]; // // Vincenzo Librandi, Sep 12 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|