The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246360 a(1) = 1, then A007051 ((3^n)+1)/2 interleaved with A057198 (5*3^(n-1)+1)/2. 10
 1, 2, 3, 5, 8, 14, 23, 41, 68, 122, 203, 365, 608, 1094, 1823, 3281, 5468, 9842, 16403, 29525, 49208, 88574, 147623, 265721, 442868, 797162, 1328603, 2391485, 3985808, 7174454, 11957423, 21523361, 35872268, 64570082, 107616803, 193710245, 322850408, 581130734 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also record values in A048673. LINKS Antti Karttunen, Table of n, a(n) for n = 1..64 Index entries for linear recurrences with constant coefficients, signature (1,3,-3). FORMULA a(1) = 1, a(2n) = (3^n+1)/2, a(2n+1) = (5 * 3^(n-1)+1)/2. a(n) = A048673(A029744(n)). a(n) = A087503(n-3) + 2 for n >= 3. - Peter Kagey, Nov 30 2019 G.f.: x -x^2*(-2-x+4*x^2) / ( (x-1)*(3*x^2-1) ). - R. J. Mathar, Sep 23 2014 MATHEMATICA LinearRecurrence[{1, 3, -3}, {1, 2, 3, 5}, 40] (* Hugo Pfoertner, Sep 27 2022 *) PROG (Scheme) (define (A246360 n) (cond ((<= n 1) n) ((even? n) (/ (+ 1 (A000244 (/ n 2))) 2)) (else (/ (+ 1 (* 5 (A000244 (/ (- n 3) 2)))) 2)))) CROSSREFS Even bisection: A007051 from A007051(1) onward: [2, 5, 14, 41, ...] Odd bisection: 1 followed by A057198. A029744 gives the corresponding record positions in A048673. A247284 gives the maximum values of A048673 between these records and A247283 gives the positions where they occur. Subsequence of A246361. Cf. A000244, A193652, A246347. Sequence in context: A318520 A039828 A357303 * A005627 A191794 A191388 Adjacent sequences: A246357 A246358 A246359 * A246361 A246362 A246363 KEYWORD nonn,easy AUTHOR Antti Karttunen, Aug 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 01:05 EDT 2023. Contains 365872 sequences. (Running on oeis4.)