login
A005627
Number of achiral planted trees with n nodes.
(Formerly M0698)
2
1, 1, 1, 2, 3, 5, 8, 14, 23, 41, 69, 122, 208, 370, 636, 1134, 1963, 3505, 6099, 10908, 19059, 34129, 59836, 107256, 188576, 338322, 596252, 1070534, 1890548, 3396570, 6008908, 10801816, 19139155, 34422537, 61074583, 109894294, 195217253
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, F. Harary, and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
R. W. Robinson, F. Harary, and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
FORMULA
a(0)=1, a(n+1):=sum(s(k)*a(n-2*k), k=0..floor(n/2)) (n>=0), where s(n)=A000625(n) (this is eq. (15) in the Robinson et al. paper). - Emeric Deutsch, May 16 2004
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od:a[0]:=1: for n from 0 to 50 do a[n+1]:=sum(s[k]*a[n-2*k], k=0..floor(n/2)) od:seq(a[j], j=0..45); # here s[n]=A000625(n).
MATHEMATICA
nmax = 36;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}];
a[0] = a[1] = 1;
Do[a[n+1] = Sum[s[k]*a[n-2*k], {k, 0, Floor[n/2]}], {n, 1, nmax}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
CROSSREFS
Cf. A000625.
Sequence in context: A039828 A357303 A246360 * A191794 A191388 A194850
KEYWORD
nonn
EXTENSIONS
More terms from Emeric Deutsch, May 16 2004
STATUS
approved