OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, F. Harary, and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
R. W. Robinson, F. Harary, and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
FORMULA
a(0)=1, a(n+1):=sum(s(k)*a(n-2*k), k=0..floor(n/2)) (n>=0), where s(n)=A000625(n) (this is eq. (15) in the Robinson et al. paper). - Emeric Deutsch, May 16 2004
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od:a[0]:=1: for n from 0 to 50 do a[n+1]:=sum(s[k]*a[n-2*k], k=0..floor(n/2)) od:seq(a[j], j=0..45); # here s[n]=A000625(n).
MATHEMATICA
nmax = 36;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}];
a[0] = a[1] = 1;
Do[a[n+1] = Sum[s[k]*a[n-2*k], {k, 0, Floor[n/2]}], {n, 1, nmax}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, May 16 2004
STATUS
approved