OFFSET
1,2
COMMENTS
In the S.-H. Cha reference this is function ~fog_2(n).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..8192
S.-H. Cha, On Parity based Divide and Conquer Recursive Functions, International Conference on Computer Science and Applications, San Francisco, USA, 24-26 October 2012.
FORMULA
G.f. A(x) satisfies: A(x) = x/(1 - x) + (1 + x + x^2) * A(x^2). - Ilya Gutkovskiy, May 23 2020
MAPLE
a:= proc(n) option remember; 1+ `if`(n=1, 0, `if`(n<=3, 1,
`if`(irem(n-1, 2, 'r')=0, a(r), a(r)+a(r+1))))
end:
seq (a(n), n=1..80); # Alois P. Heinz, Aug 23 2012
MATHEMATICA
a[n_] := a[n] = If[n < 3, n, {q, r} = QuotientRemainder[n, 2];
Switch[r, 1, a[q] + 1, 0, a[q-1] + a[q] + 1]];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Apr 24 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Sung-Hyuk Cha, Aug 20 2012
STATUS
approved