OFFSET
1,2
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
V. A. Liskovets and A. Mednykh, Number of non-orientable coverings of the Klein bottle
A. D. Mednykh, On the number of subgroups in the fundamental group of a closed surface, Commun. in Algebra, 16, No 10 (1988), 2137-2148.
FORMULA
a(n)=d(n) (the number of divisors) for odd n.
a(n)=[3d(n)+sigma(n/2)-d(n/2)]/2 for even n where d(n) is the number and sigma(n) the sum of divisors of n (A000005 and A000203).
Inverse Moebius transform of 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 5, 1, 5, 1, 6, 1, 6, 1, 7, 1, 7, ... . G.f.: Sum_{n>1} x^n*(1+2*x^n-x^(4*n)-x^(5*n))/(1+x^(2*n))/(1-x^(2*n))^2. - Vladeta Jovovic, Feb 03 2003
MAPLE
with(numtheory); A046524:=n->`if`(type(n/2, integer), (3*tau(n) + sigma(n/2) - tau(n/2))/2, tau(n)); seq(A046524(n), n=1..100); # Wesley Ivan Hurt, Feb 14 2014
MATHEMATICA
kb[n_]:=If[OddQ[n], DivisorSigma[0, n], (3DivisorSigma[0, n]+ DivisorSigma[ 1, n/2]- DivisorSigma[0, n/2])/2]; Array[kb, 90] (* Harvey P. Dale, Oct 08 2011 *)
PROG
(Sage)
def A046524(n) :
f = lambda n : 1 if n % 2 == 1 else (n+7)//4
return add(f(d) for d in divisors(n))
[A046524(n) for n in (1..87)] # Peter Luschny, Jul 23 2012
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Feb 03 2003
STATUS
approved