login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of coverings of Klein bottle with n lists.
3

%I #31 Mar 13 2018 04:31:10

%S 1,3,2,5,2,7,2,8,3,8,2,13,2,9,4,13,2,14,2,16,4,11,2,23,3,12,4,19,2,22,

%T 2,22,4,14,4,30,2,15,4,30,2,26,2,25,6,17,2,41,3,23,4,28,2,30,4,37,4,

%U 20,2,50,2,21,6,39,4,34,2,34,4,34,2,59,2,24,6,37,4,38,2,56,5,26,2,62,4,27,4

%N Number of coverings of Klein bottle with n lists.

%H T. D. Noe, <a href="/A046524/b046524.txt">Table of n, a(n) for n=1..1000</a>

%H V. A. Liskovets and A. Mednykh, <a href="https://www.researchgate.net/publication/251203042">Number of non-orientable coverings of the Klein bottle</a>

%H A. D. Mednykh, <a href="https://doi.org/10.1080/00927878808823684">On the number of subgroups in the fundamental group of a closed surface</a>, Commun. in Algebra, 16, No 10 (1988), 2137-2148.

%F a(n)=d(n) (the number of divisors) for odd n.

%F a(n)=[3d(n)+sigma(n/2)-d(n/2)]/2 for even n where d(n) is the number and sigma(n) the sum of divisors of n (A000005 and A000203).

%F Inverse Moebius transform of 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 5, 1, 5, 1, 6, 1, 6, 1, 7, 1, 7, ... . G.f.: Sum_{n>1} x^n*(1+2*x^n-x^(4*n)-x^(5*n))/(1+x^(2*n))/(1-x^(2*n))^2. - _Vladeta Jovovic_, Feb 03 2003

%p with(numtheory); A046524:=n->`if`(type(n/2, integer), (3*tau(n) + sigma(n/2) - tau(n/2))/2, tau(n)); seq(A046524(n), n=1..100); # _Wesley Ivan Hurt_, Feb 14 2014

%t kb[n_]:=If[OddQ[n],DivisorSigma[0,n],(3DivisorSigma[0,n]+ DivisorSigma[ 1,n/2]- DivisorSigma[0,n/2])/2]; Array[kb,90] (* _Harvey P. Dale_, Oct 08 2011 *)

%o (Sage)

%o def A046524(n) :

%o f = lambda n : 1 if n % 2 == 1 else (n+7)//4

%o return add(f(d) for d in divisors(n))

%o [A046524(n) for n in (1..87)] # _Peter Luschny_, Jul 23 2012

%Y Cf. A027842, A027844, A000005, A000203, A069733, A069734, A069735.

%K nonn,easy,nice

%O 1,2

%A _Valery A. Liskovets_

%E More terms from _Vladeta Jovovic_, Feb 03 2003