login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted non-separable bi-Eulerian planar maps with 2n edges. Bi-Eulerian means all its vertices and faces are of even valency.
4

%I #41 Apr 15 2018 02:07:43

%S 1,1,2,8,54,442,4032,39706,413358,4487693,50348500,579994802,

%T 6827955072,81854670861,996529292432,12293898494952,153421680489694,

%U 1934041122204318,24599034335501730,315369011873625930,4072021557616191708,52915860528084306704,691646518495876375968

%N Number of rooted non-separable bi-Eulerian planar maps with 2n edges. Bi-Eulerian means all its vertices and faces are of even valency.

%C The formula from the article by Liskovets and Walsh, p. 218, B'ns(n), gives incorrect data {1, 4, 25, 204, 1964, 21070, 243681, ...}. Here is the incorrect formula rewritten into Mathematica: Table[(Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 20}]. - _Vaclav Kotesovec_, Apr 13 2018

%H Gheorghe Coserea, <a href="/A069729/b069729.txt">Table of n, a(n) for n = 0..500</a>

%H V. A. Liskovets and T. R. S. Walsh, <a href="http://dx.doi.org/10.1016/j.disc.2003.09.015">Enumeration of Eulerian and unicursal planar maps</a>, Discr. Math., 282 (2004), 209-221.

%F G.f. y=A(x) satisfies 0 = y^9 - y^8 + 18*x*y^6 - 66*x*y^5 + 47*x*y^4 + 81*x^2*y^3 - 81*x^2*y^2 + 27*x^2*y - 3*x^2. - _Gheorghe Coserea_, Apr 13 2018

%F a(n) ~ 2^(6*n - 1) * 3^(8*n - 1/2) / (3125 * sqrt(Pi) * 13^(4*n - 5/2) * n^(5/2)). - _Vaclav Kotesovec_, Apr 13 2018

%F A(x) = 1 + serreverse(-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y - 1)*(3*y^2 + y - 1)^4 / (243 * y^6 * (2*y-1)^3)), where y = A000108(3*x). - _Gheorghe Coserea_, Apr 14 2018

%e A(x) = 1 + x + 2*x^2 + 8*x^3 + 54*x^4 + 442*x^5 + 4032*x^6 + ...

%t CoefficientList[1 + InverseSeries[Series[-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3), {x, 0, 25}], x], x] (* _Vaclav Kotesovec_, Apr 14 2018, after _Gheorghe Coserea_ *)

%o (PARI)

%o seq(N) = {

%o my(x='x+O('x^(2*N-1)), y=1+serreverse(x/(3*(1+x)^3)), f=(1+3*y-y^2)/3,

%o g=subst(f, 'x, 'x^2), v=Vec(subst(g, 'x, serreverse(x*g^2))));

%o vector((#v+1)\2, n, v[2*n-1]);

%o };

%o seq(23) \\ _Gheorghe Coserea_, Apr 13 2018

%Y Cf. A069726, A005470.

%K nonn

%O 0,3

%A _Valery A. Liskovets_, Apr 07 2002

%E More terms from _Gheorghe Coserea_, Apr 13 2018