login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103936
Theta series of Barnes-Wall lattice in 64 dimensions.
1
1, 0, 0, 0, 9694080, 0, 89754255360, 10164979630080, 639876527832960, 24647440237854720, 646038471835975680, 12399979575839293440, 184026095698230213120, 2200347840694273966080, 21889196776341251850240, 185813171532073386639360, 1373979253438910041038720
OFFSET
0,5
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
EXAMPLE
1 + 9694080*q^8 + 89754255360*q^12 + 10164979630080*q^14 + 639876527832960*q^16 + 24647440237854720*q^18 + 646038471835975680*q^20 + 12399979575839293440*q^22 + 184026095698230213120*q^24 + 2200347840694273966080*q^26 + ...
In terms of H1 = theta_{D4} and H2 = (eta(q) eta(q^2))^8: H1^16 - 384*H1^12*H2 + 38016*H1^8*H2^2 - 743424*H1^4*H2^3 + 9732096*H2^4.
PROG
(Sage)
from sage.modular.etaproducts import qexp_eta; bound = 20;
eta(q) = qexp_eta(ZZ[['q']], bound);
R.<q> = ZZ[];
H1 = ModularForms( Gamma0(2), 2, prec=bound).0;
H1 = R(H1.q_expansion());
H2 = R(q*(eta(q)*eta(q^2))^8);
f = H1^16-384*H1^12*H2+38016*H1^8*H2^2-743424*H1^4*H2^3+9732096*H2^4;
list(f)[:bound] # Andy Huchala, May 01 2021
CROSSREFS
Sequence in context: A250518 A268252 A251504 * A147713 A348072 A123322
KEYWORD
nonn
AUTHOR
Eric Rains and N. J. A. Sloane, Sep 27 2005
STATUS
approved