OFFSET
0,5
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
LINKS
EXAMPLE
1 + 9694080*q^8 + 89754255360*q^12 + 10164979630080*q^14 + 639876527832960*q^16 + 24647440237854720*q^18 + 646038471835975680*q^20 + 12399979575839293440*q^22 + 184026095698230213120*q^24 + 2200347840694273966080*q^26 + ...
In terms of H1 = theta_{D4} and H2 = (eta(q) eta(q^2))^8: H1^16 - 384*H1^12*H2 + 38016*H1^8*H2^2 - 743424*H1^4*H2^3 + 9732096*H2^4.
PROG
(Sage)
from sage.modular.etaproducts import qexp_eta; bound = 20;
eta(q) = qexp_eta(ZZ[['q']], bound);
R.<q> = ZZ[];
H1 = ModularForms( Gamma0(2), 2, prec=bound).0;
H1 = R(H1.q_expansion());
H2 = R(q*(eta(q)*eta(q^2))^8);
f = H1^16-384*H1^12*H2+38016*H1^8*H2^2-743424*H1^4*H2^3+9732096*H2^4;
list(f)[:bound] # Andy Huchala, May 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Rains and N. J. A. Sloane, Sep 27 2005
STATUS
approved